The Bagging and n2-Classifiers Based on Rules Induced by MODLEM
نویسنده
چکیده
An application of the rule induction algorithm MODLEM to construct multiple classifiers is studied. Two different such classifiers are considered: the bagging approach, where classifiers are generated from different samples of the learning set, and the n-classifier, which is specialized for solving multiple class learning problems. This paper reports results of an experimental comparison of these multiple classifiers and the single, MODLEM based, classifier performed on several data sets.
منابع مشابه
Changing representation of learning examples while inducing classifiers based on decision rules
Decision rules induced from examples are used to predict classification of new objects. Improving classification accuracy may be obtained by changing the original representation of the learning data. Two different approaches to such a transformation are considered in this paper: selecting the subset of the most relevant attributes with the wrapper approach, and modifying the presence of some le...
متن کاملOn Combined Classifiers, Rule Induction and Rough Sets
Problems of using elements of rough sets theory and rule induction to create efficient classifiers are discussed. In the last decade many researches attempted to increase a classification accuracy by combining several classifiers into integrated systems. The main aim of this paper is to summarize the author’s own experience with applying one of his rule induction algorithm, called MODLEM, in th...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کاملThe Role of Combining Rules in Bagging and Boosting
To improve weak classifiers bagging and boosting could be used. These techniques are based on combining classifiers. Usually, a simple majority vote or a weighted majority vote are used as combining rules in bagging and boosting. However, other combining rules such as mean, product and average are possible. In this paper, we study bagging and boosting in Linear Discriminant Analysis (LDA) and t...
متن کاملBagging classifiers based on Kernel density estimators
A lot of research is being conducted on combining classification rules (classifiers) to produce a single one, known as an ensemble, which in general is more accurate than the individual classifiers making up the ensemble. Two popular methods for creating ensembles are Bagging introduced by Breiman, (1996) and, AdaBoosting by Freund and Schapire (1996). These methods rely on resampling technique...
متن کامل